General Subroutine for Calculating

\[\int_{T_{0}}^{T} \frac{\Delta C_{P}}{R} \, dT \]

MDCPS---Mean Differential Heat Capacity for Entropy Calculations
IDCPS----Integral Differential Heat Capacity for Entropy Calculations

\[\Delta A = \sum_{i} v_{i} \cdot A_{i} \hspace{1cm} \Delta B = \sum_{i} v_{i} \cdot B_{i} \hspace{1cm} \Delta C = \sum_{i} v_{i} \cdot C_{i} \hspace{1cm} \Delta D = \sum_{i} v_{i} \cdot D_{i} \]

'\(i \)' refers to the total number of products and reactants in the chemical reaction under consideration

'\(v_{i} \)' refers to the stoichiometric coefficient of the \(i \)th component of the reaction

Use the following subroutine to your main worksheet for the differential heat capacity calculations to find the entropy:

\[\tau(T_{0}, T) := \frac{T}{T_{0}} \]

\[S_{2}(T_{0}, T, \Delta C, \Delta D) := \Delta C \cdot T_{0}^{2} + \frac{\Delta D}{\tau(T_{0}, T)^{2} \cdot T_{0}^{2}} \]

\[S_{3}(T_{0}, T) := \frac{\tau(T_{0}, T) + 1}{2} \]

\[S_{4}(T_{0}, T) := \frac{\tau(T_{0}, T) - 1}{\ln(\tau(T_{0}, T))} \]

\[\text{MDCPS}(T_{0}, T, \Delta A, \Delta B, \Delta C, \Delta D) := \Delta A + (\Delta B \cdot T_{0} + S_{2}(T_{0}, T, \Delta C, \Delta D) \cdot S_{3}(T_{0}, T)) \cdot S_{4}(T_{0}, T) \]

\[\text{IDCPS}(T_{0}, T, \Delta A, \Delta B, \Delta C, \Delta D) := \text{MDCPS}(T_{0}, T, \Delta A, \Delta B, \Delta C, \Delta D) \cdot \ln(\tau(T_{0}, T)) \]

80