Abstract

This document describes a first-principles-based mathematical model developed to predict the voltage–capacity behavior of batteries having hybrid cathodes comprising a mixture of carbon monofluoride (CF\textsubscript{x}) and silver vanadium oxide (SVO). These batteries typically operate at moderate rates of discharge, lasting several years. The model presented here is an accurate tool for design optimization and performance prediction of batteries under current drains that encompass both the application rate and accelerated testing.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Hybrid batteries; Carbon monofluoride, CF\textsubscript{x}; Silver vanadium oxide, SVO; Lithium primary battery; Mathematical model

1. Background

Lithium/hybrid-cathode primary battery technology, developed by Medtronic for implantable medical devices, uses a cathode mixture of carbon monofluoride (CF\textsubscript{x}) and silver vanadium oxide (SVO) [1–5]. The two materials combine in a synergistic fashion to give improved performance compared to either pure-component used alone. For a given volume, CF\textsubscript{x} provides high energy but lower power, whereas SVO provides high power but only moderate energy. A mixture of the two materials, consequently, gives higher energy than SVO, and higher power than CF\textsubscript{x}. In addition, the mixture allows a low-voltage plateau at high depth-of-discharge (DOD), which provides a reliable end-of-service warning.

Hybrid cathodes are designed at various mix-ratios (the ratio of the capacities delivered by the cathode due to CF\textsubscript{x} and SVO), thicknesses, porosities, and surface areas to match performance characteristics to device operating conditions. These characteristics include: energy density, power density and the shape of the voltage–capacity curve near the end of discharge. To facilitate the design process, a physically-based mathematical model of the hybrid cathode is developed that predicts cathode performance over a range of design parameters and operating conditions applicable to the devices that use these batteries.

2. Model development

Fig. 1 is a schematic representation of a typical hybrid-cathode battery from a modeling perspective. The cathode is a porous pellet made of CF\textsubscript{x}, SVO, and inert materials in varying proportions and pressed on to the current collector. The separator is an inert porous material such as polyethylene, while the anode is Li metal pressed onto a current collector. The pores of the cathode and separator are flood-filled with electrolyte, and excess electrolyte fills the headspace and other voids in the can. Electrochemical oxidation of Li to Li+ ions occurs at the anode/electrolyte interface, driving ionic current flow from the anode to the cathode, where electrochemical reduction of CF\textsubscript{x} and SVO take place. In contrast to the anode, the sites of cathode reaction are its pore-walls, which are distributed throughout the volume of the porous cathode. The electrons generated due to oxidation at the anode and consumed due to reduction at the cathode drive current in the external circuit, which powers the device.

The following assumptions have been made in developing the models for hybrid batteries:

1. Cathode limits cell capacity (i.e., excess Li in anode).
2. Cathode dominates cell resistance (i.e., resistances in anode, separator etc. are negligible).
3. Cathode is kinetically limited (i.e., ohmic resistances are negligible).
Nomenclature

\(a \) Specific surface area of electrode, \(\text{cm}^2/\text{cm}^3 \)

\(A \) Geometric area of electrode, \(\text{cm}^2 \)

\(c \) Concentration, \(\text{mol}/\text{cm}^3 \)

\(E \) Cell voltage, \(\text{V} \)

\(f \) Constant, \(37.44 \text{ V}^{-1} \)

\(F \) Constant, \(96,487 \text{ C/mol} \)

\(i \) Current density, \(\text{A/cm}^2 \)

\(i_0 \) Exchange-current density, \(\text{A/cm}^2 \)

\(I_{\text{app}} \) Cell current, \(\text{A} \)

\(k \) Rate-constant, \(\text{A/cm}^2 \)

\(L \) Cathode thickness, \(\text{cm} \)

\(m \) Mix-ratio

\(M \) Mass, \(\text{g} \)

\(n \) Number of electron transferred

\(R \) Particle radius, \(\text{cm} \)

\(s \) Stoichiometric coefficient

\(t \) Time, \(\text{s} \)

\(U \) Open-circuit voltage, \(\text{V} \)

\(V \) Cathode volume, \(\text{cm}^3 \)

\(\hat{V} \) Molar volume, \(\text{cm}^3/\text{mol} \)

Greek Symbols

\(\beta \) Transfer-coefficient

\(\theta \) Depth of discharge

\(\rho \) Macroscopic density, \(\text{g/cm}^3 \)

Subscripts

\(\text{C} \) \(\text{CF}_x \)

\(\text{S} \) \(\text{SO} \)

\(\text{SV} \) \(\text{SVO} \)

\(\text{V} \) \(\text{VO} \)

Superscripts

\(\text{max} \) Maximum

\(0 \) Initial

4. Cathode active material is always accessible to the electrolyte regardless of shape changes during discharge.

5. Effects of heat generation, degradation, and parasitic reactions are negligible.

6. Spherical \(\text{CF}_x \) particles and cylindrical \(\text{SVO} \) particles.

2.1. Pure \(\text{CF}_x \) battery

Based on observations presented in the literature \([5–7]\) it is hypothesized that for the discharge rates considered here the \(\text{CF}_x \) electrode operates under kinetic/charge-transfer limitation only. The overall electrochemical reaction occurring at the cathode is

\[
\text{CF}_x + x\text{Li}^+ + xe^- \rightarrow x\text{LiF} + C
\]

(1)

Since the above reaction is irreversible, the rate of the reaction or current is expressed using Tafel kinetics as

\[
i_C = -i_0Ce^{-\beta_Cn_Cf(E-U_C^\prime)}
\]

(2)

Fig. 1. Schematic of a \(\text{CF}_x \)–SVO hybrid-cathode battery.

where \(i_C \) is the local reaction current density in the porous \(\text{CF}_x \) electrode, \(i_0C \) is the exchange-current density of \(\text{CF}_x \), \(\beta_C \) is the transfer coefficient of the reaction, \(n_C \) is the number of electrons transferred, \(U_C \) is the DOD-dependent open-circuit potential of \(\text{CF}_x \) versus \(\text{Li} \), and \(E \) is the cell voltage under a load current of \(I_{\text{app}} \).

Since a kinetically limited porous electrode operates with a uniform reaction current throughout its volume, the local reaction current density is related to the total cell current by

\[
I_{\text{app}} = i_Ca_C\hat{V}
\]

where

\[
a_C\hat{V} = a_C^0\hat{V}^0(1-\theta_C)^{2/3}
\]

(4)

The initial total surface area of \(\text{CF}_x \), \(a_C^0\hat{V}^0 \), is calculated from the relation

\[
a_C^0\hat{V}^0 = \frac{3M_C^0}{R_C^0\rho_C}
\]

(5)

where \(M_C^0 \) and \(R_C^0 \) are the initial mass and particle radius of \(\text{CF}_x \) and \(\rho_C \) is the macroscopic density of \(\text{CF}_x \) in the cathode.

Mass balance with Faraday’s law gives the equation governing the variation of DOD with time as

\[
\frac{d(1-\theta_C)}{dt} = \frac{d(M_C/M_C^0)}{dt} = \frac{sc\hat{V}_C\rho_C}{n_CFM_C^0}i_Ca_C\hat{V}
\]

(6)

which means that the rate of consumption of \(\text{CF}_x \) (i.e., the left-hand side) is proportional to the local reaction current density of \(\text{CF}_x \). Considering that DOD is zero at the beginning of discharge, the initial condition is set as

\[
at t = 0, \quad \theta_C = 0
\]

(7)
Rearranging Eq. (2) and using Eq. (3) and (4), we get an expression for cell voltage as

\[E = U_C - \frac{1}{\beta C n C f} \ln \left(\frac{-I_{app}}{(1 - \theta_C)^{2/3}} \right) \]
where

\[U_C = U'_C + \frac{1}{\beta C n C f} \ln \left(\frac{a_C^0 U^0}{i_0 C} \right) \]

The local reaction current densities are related to the total cell current by the relation

\[I_{app} = i_{SV} a_{SV} V \]

where \(a_{SV} \) is the electrochemically active surface area of SVO per unit volume of the electrode. The quantity \(a_{SV} V \) is a constant throughout discharge since SVO is not consumed. It is calculated from the relation

\[a_{SV} V = \frac{2 M_{SV}^0}{R_{SV}^0 S_{SV}} \]

Mass balance with Faraday’s law gives the equation governing the variation of DODs with time as

\[\frac{d\theta_S}{dr} = -\frac{2a_S}{n_S F C_{SV}^0 R_{SV}^0} i_{SV}[e^{\beta_S n_S f(E-U_S)} - e^{-(1-\beta_S)n_S f(E-U_S)}] \]

\[\frac{d\theta_V}{dr} = -\frac{2a_V}{n_V F C_{SV}^0 R_{SV}^0} i_{SV}[e^{\beta_V n_V f(E-U_V)} - e^{-(1-\beta_V)n_V f(E-U_V)}] \]

which means that the rate of reaction of Li\(^+\) (i.e., the left-hand side) is proportional to the local reaction current density of SVO. Considering that the SVO electrode is fully charged, we get the initial conditions as

\[a \theta_S = 0 \]

\[a \theta_V = 0 \]

Eqs. (13–19) are solved numerically to obtain the cell voltage.

2.3. CF\(_x\)–SVO hybrid battery

The electrochemical reactions involved in the CF\(_x\)–SVO hybrid cathode are reaction (1) for CF\(_x\) and reaction (10) for SVO. Therefore, the kinetic expressions used here are the same as in the pure-component models: Eqs. (2) and (4) for CF\(_x\) and Eq. (13) for SVO.

In contrast to the pure-component models presented above, the total reaction current in a hybrid cathode is the sum of the reaction currents of CF\(_x\) and SVO. Applying charge balance, the local reaction current densities are related to the total cell current by the relation

\[I_{app} = i_{AC} V + i_{SV} a_{SV} V \]

As with kinetics, the mass balance equations for a hybrid cathode are the same as those for the pure-component models: Eqs. (6 and 7) for CF\(_x\) and Eqs. (16–19) for SVO.

Eqs. (2, 4–7) and Eq. (13,15–19) are numerically solved with Eq. (20) to obtain the cell voltage.
3. Model validation and parameter estimation

3.1. Pure CF_x battery

Eq. (8) gives the predicted relationship between cell voltage and DOD for a pure CF_x battery. Fig. 2 shows the comparison between this equation and experimental data obtained from prototype CF_x batteries (circles). The figure shows that the model and data agree well over a range of discharge currents and DODs.

In Eq. (8) two parameters are not known, namely, \(U_C \) and the transfer-coefficient, \(\beta_C \). These parameters are estimated from experimental data by trial-and-error. For a trial value of \(\beta_C \), Eq. (8) is used to calculate \(U_C \) from measured voltage–DOD curves at each rate and plotted. Since this term is current-independent, the right value of \(\beta_C \) should produce the best alignment of these curves. Such a curve of best alignment gives \(U_C \) as shown by line (d) in Fig. 2. The value of \(\beta_C \) that produced this curve is 0.57.

3.2. Pure SVO battery

Fig. 3 shows the open-circuit potential curve measured by Crespi et al. [4] as a function of the quantity \(x+2y \) of reaction (10), which is equivalent to the sum of the DODs of the silver and vanadium reduction reactions, \(\theta_S + \theta_V \). This curve is split into two curves – one spanning the region 0–2 on the x-axis and the other spanning 2–7. The first part is treated as the open-circuit potential for the hypothetical silver reduction (i.e., reaction (11)) and fit as a function of its DOD, \(\theta_S \), ranging from 0 to 2. The second part is treated as the open-circuit potential for the hypothetical vanadium reduction (i.e., reaction (12)) and fit as a function its DOD, \(\theta_V \), ranging from 0 to 5.

This model is validated by comparing against experimental data obtained on prototype SVO batteries as shown in Fig. 4. The unknown parameters involved are the transfer-coefficients and the exchange-current densities, \(\beta_S, i_{0S} \) and \(\beta_V, i_{0V} \). The values of the transfer-coefficients do not affect the voltage–capacity curves significantly and, therefore, they are set to 0.5. The measured voltage at the lower plateau shows little change with current, which means that the resistance of vanadium reduction is small. This gives a lower limit of \(10^{-4} \) A/m² for \(i_{0V} \). The upper plateau, however, varies strongly with current, which is fitted to obtain \(i_{0S} \). A constant value of \(i_{0S} \) does not fit the data and, therefore, the parameter was allowed to vary with \(\theta_S \) as

\[
i_{0S} = k_S(\theta_S^{\text{max}} - \theta_S)^2
\]

The functional form of \(i_{0S} \) and the value of \(k_S \) are obtained by fitting the higher-voltage plateau. A value of \(10^{-6} \) A/m² for \(k_S \) produces a good fit. Good overall agreement is obtained between model (lines) and data (circles) over a range of discharge currents.
3.3. CFx–SVO hybrid battery

The parameters estimated above with pure CFx and pure SVO batteries are used here with no other new parameters. The predictions of the model are compared against experimental discharge data obtained from various prototype hybrid batteries varying in cathode thickness, geometric area, and mix-ratio.

As Fig. 5 shows good agreement is obtained between model predictions (lines) and experimental data (circles) for the range of battery designs and discharge currents considered.

4. Conclusion

Physically based mathematical models are developed here for CFx–SVO hybrid batteries operating at moderate rates. The models are validated by demonstrating good agreement with experimental data over a wide range of design parameters and operating conditions. In the process, key parameters governing kinetic and ohmic resistances in the battery are estimated.

References